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DUAL DIFFERENCE FILTERING: A REPLACEMENT
FOR INTERPOLATION AND SUBTRACTION TO DETECT

CHANGES IN MISREGISTERED SIGNALS

1. INTRODUCTION AND BACKGROUND

This report introduces an alternative to interpolation and subtraction as a means of
detecting differences in a pair of digital signals. A common application for this method of
change detection is to digitized imagery in, for example, remote sensing [1] or medical
imaging [2,3] but it is also useful in time delay estimation and in many other traditional
signal processing problems [4]. The algorithmic technique proposed here can relax
optical/mechanical alignment tolerances for satellite-based systems, reducing a vital
cost/risk factor [5]. Improvements in the quality of radiological images using these methods
can allow "reduction of injected contrast agents or X-ray doses" [6]. The new methods also
significantly enhance signal-to-clutter ratios in autonomous surveillance applications and in
military search and track systems [7] in which the detection of moving targets is based on
digital background subtraction followed by thresholding.

The standard procedure for detecting changes in these applications is to interpolate the
first discrete signal at points corresponding to the samples of the second, and then subtract
the signals. The shift s between the pair of sampling grids defining the discrete signals is
assumed to be known deterministically or from signal-based algorithms [8]. The
interpolator applied to the first signal usually takes the form of a convolution with a finite-
extent kernel k. When evaluated at points shifted s from the original grid, the discrete result
constitutes a resampled digital signal. The second signal is usually not resampled.

In an imaging application, Stocker and Oshagan [9] recognized that the spectral
modification to the first signal induced by interpolation was lacking in the unaltered second
signal. The resulting spectral mismatch limited the amount of clutter reduction in the
difference signal. They used a polynomial resampler, the cubic B-spline (CBS), to partially
overcome this problem. CBS has the unusual, noninterpolative property of not reproducing
the original discrete signal at the sample points, i.e., in the limit s -* 0. Therefore,
resampling the second signal with CBS at zero shift produces some spectral shaping.
Subtraction from the first signal, resampled at shift s, then achieves a marked reduction in
residual clutter.

One way to eliminate spectral mismatch completely is to apply a standard symmetric
interpolator to the first signal at the shift sf2, and to the second at - sf2. However, better
performance can be realized if the restrictive idea of interpolating is discarded. The goal of
interpolation is to reproduce an underlying continuous signal. It is, therefore, appropriate
when a comparison is made to an unaltered second signal. But if the actual goal is change
detection, this approach is unnecessarily limiting.

This report considers the general effects of filtering both signals prior to subtraction
and develops a mathematical method for evaluating and optimizing these Dual Difference

Manuscript approved September 14, 1992.
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A. SCHAUM

Filters (DDFs). Conventional interpolation is seen as a special case, when the second signal
is not filtered. Interpolators with nontrivial behavior at zero shift like the cubic B-spline are
seen as suboptimal types of DDF.

2. ANALYSIS

Withf(x) representing the underlying signal intensity at position x, sample values of
f,f(n) (where n is an integer) constitute the first digital signal, which may be convolved

with a kernel k(s) to produce a discrete sequence

ks)(n - n)f (n). (1)
n -1

In practical applications, this sum is finite because k(S)(m) is nonzero for only a few values
of m near m = 0. The dependence of kj on s arises because the choice of filter generally
depends on the separation of the sampling grids.

Similarly, the second digital signal f(n + s), which is a sampled version off at the
shifted points, can be filtered to produce a second sequence, using a (possibly) different

kernel 4s):

I ( ()m-n)f(n+s). (2)
n

It is convenient to redefine k, to allow for continuous arguments

kl(n + s) -- k(S) (n) , (3)

where n is an integer. When Eq. (3) is substituted into expression (1), the filtered sequence
in (1) assumes the form of a convolution evaluated at the point m + s, which is already the
form in (2). The sequences in expressions (1) and (2) now can be treated as sample values
of continuous functionsflf2, where

fi(x) 3_ I ki(x - n) f (n) (4a)
n

and

f2(S)(w) 4s)( - n - s)f (n + s), (4b)
n

that are evaluated at x = m + s. Equation (4a) is a standard form for an interpolation
functionfi produced by a kernel kj.

We will usually assume that 0 < s < 1/2. That is, the second signal is shifted to the
right of the first by no more than half a sample. This can always be arranged by relabelling
the integer sample points and/or interchanging the order of the signals, if necessary. Also,
the treatment here is in one dimension only. Higher-dimensional filtering can be
accomplished by a cascade of two one-dimensional operations or, more generally, by
treating the arguments x, n, and s as vectors.
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In conventional change detection, before a subtraction is made, one of the signals-
say, the first-is interpolated, and the other is unaltered. For this method, a good kernel k1
produces anf1 that is close to, and the second kernel is trivial:

A()(m- n) nM 9 m )

where 6 is the Kronecker delta, However, the requirement that kj be a good interpolator is
too restrictive if the real goal is change detection. Nevertheless, a review of the
interpolation application is instructive.

Because the sampling grids {n} and {n + s) are defined here as having unit spacing,
the Nyquist frequency is VNyq = 1/2 cycles/sample. If the Fourier transform of f has no
components with frequency v 2 1/2 ,f is called "oversampled." According to the Nyquist
Reconstruction Theorem, the kernel

k, (x) = sinc (x) = sin (71x) (6)
irx

may be used in Eq. (4a) to reproducef exactly (i.e.,f1 =f ), wheneverf is oversampled.

In practice, k1 must be of finite support (the range of x over which k1 is nonzero) to
make expression (1) or Eq. (4a) contain only a finite number of terms. For example, the
sinc function can be truncated at ± N/2 to make an N-point interpolator. Two other
common interpolators are nearest neighbor (NN) and linear (LIN). Figure 1 illustrates
k1(x) for NN, LIN, and SINC. The supports for NN and LIN are 1 and 2, respectively.
The SINC has infinite support, but when truncated at ± N/2, its support or order becomes
N.

1.0 - NN A

-LIN

--- SINC

X 05

- 0.5 ,... . . . . .. , . ...
-3 -2 -1 0 1 2 3

x (SAMPLES)

Fig. 1 - Kemels for three interpolators
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A. SCHAUM

The method of analysis developed here relies heavily on Fourier transform theory.
The transform operator is denoted by S, and upper and lower cases denote transform pairs.
Also, the symbol X indicates a correspondence between real and transform space: for
example,

(ok) (v) = K(v) J e-iX k(x) dx (c) 2nv) (7)

means the same thing as
k X KK. (8)

The shift and convolution theorems are then

gWx + s) <-- e 27cisv G (v)

e-2,ixVo g(x) X G(v +v 0 ), (9)
and

g(x) h(xc) ¢~ (G * H$(y)

(g * h)(x) X G(v) H(v) . (10)

Another important theorem [10,11] relates the comb function, an infinite sum of Dirac
delta functions,

comb(x) - I 6 ( - n), (11)
n

to its transform
comb(x) * COMB(v). (12a)

Equations (11), (12a), and (7) immediately imply that

COMB(v) = I e-2inv. (12b)
n

Another important relation that follows directly from the definitions of the continuous
convolution operation * and the comb is

Ig(x- n) h(n) = [g * (comb h)](x), (13)
n

which is valid for arbitrary g, h. A special case of Eq. (13) is also useful:

, g(x - n) = (g * comb)(x) . (14)
n

These relations can be used to express a discrete sum of squared sample values of a
function g in terms of its Fourier transform G. Letting g -* g2, x - 0, and n -* -n in Eq.
(14) results in

Zg2(n)=(g2 * comb) (0). (15)
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Next, successively using Eqs. (10) and (12a), the definition of F-1, and Eq. (10) again in
Eq. (15) produces

j g2 (n) = Ea (a (g2 * comb))] (0) = En (r (g2 ) COMB)] (0)

Jdv' [f (g2 ) (vI ) COMB (v )I= dv'[G*G](v')COMB(v'). (16)

The frequency-space version of Eq. (11) is now used in Eq. (16) along with the definition
of convolution:

Xg2 (n) = dv' 6(vW -n) dvG(v' -.v) G(v)
n ~~~~~~~~~~~~~(17)

= I, [ dvG(n-v) G(v).
n 

We assume for convenience that g is real. Then

G (v) G* (-v) v v, (18)

and from Eq. (17),

Ag2 (n) dv G* (v - n) G (v). (19)
n

If, furthermore, the sequence g(n) results from oversampling the continuous function
g, so that G(v) = 0 for I v I 1/2, then Eq. (19) simplifies to

Ig 2 (n) = dv G (v) I2, (20)

which is closely related to Parseval's Theorem, with the usual roles of position and
frequency interchanged. Note the distinction, however: in Eq. (20), G is the Fourier
transform of the underlying function g, not of the Fourier series (g(n)}. These two
transforms are equal if g is oversampled, but even if it is not, Eq. (20), which we will call
the discrete Parseval's Theorem, still holds in an average sense described below.

Note from Eq. (20) that for any oversampled g, I g2 (n) is independent of where the
sampling grid is laid down relative to the continuous signal g(x). Shifting the grid by an
amount t in one direction is equivalent to shifting g(x) in the other; i.e.,

g(x) - g(x+t) (21)

which, according to Eq. (9), in Fourier space is equivalent to

G (v) -4 G (v) e2itiv, (22)
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A. SCHAUM

under which change the right side of Eq. (20) is invariant. Because the value of X g2 (n) is
independent of grid placement for an oversampled g, we call Eq. (20) the strong form of
the discrete Parseval's Theorem. When g is not oversampled, a weaker version still holds,
in which g is randomly shifted with respect to the sampling grid.

In particular, under the translation of the function g by the amount t e [0,1], according
to Eq. (22), Eq. (19) becomes

Xg 2 (n)-- e2 tit dv G* (v - n) G(v) (23)
n

Averaging Eq. (23) over t: 0 -* 1 yields Eq. (20). That is, the weak form of the discrete
Parseval's Theorem is also expressed by Eq. (20), if the left-hand side is understood as an
average over all placements of the sampling grid.

Methods similar to those above can also be used to generalize both forms of the
discrete Parseval's Theorem and to derive a simple formula characterizing the performance
of any DDF. To compute the differencing error associated with the DDF (kj, k2), we let

g(S) (x) =fi (x + s) -f(2s) (x + s) (24)

(see Eq. (4)). Then the squared error in the difference signal is

d2 -[f(n + s) -f(s)(n +s)]2, (25)
n

or
d = [g(s) (n)]2 (26)

Next, from Eqs. (24) and (9),

G(s) (v) = [ F1 (v) - F(s) (v)] e2 nivs. (27)

The asymmetry in the (s)-dependence introduced in Eqs. (3) and (4) accounts for the
corresponding asymmetry in the Fi of Eq. (27). This notation was introduced to facilitate
use of the discrete Parseval's Theorem.

If the sampling grid were dense enough that g(s)(n) represented an oversampling of
g(s)(x), then Eq. (20) could be applied immediately to Eqs. (26) and (27), with g - g(s).
But the functionsfi defining g(S) in Eq. (24) are usually not bandlimited, and so neither is
g(s), because the transformations of Eq. (4) introduce aliasing whenever either kernel ki is
of finite support. Therefore, g cannot be oversampled, even if the fti are, and the strong
Parseval's Theorem does not apply.

Nevertheless, when Eqs. (24), (4a), and (4b) define g, Eq. (20) still holds whenever
f is oversampled, even if g is not. This key property will permit the simple characterization
of the error (Eq. (25)) as a power spectrum that is the product of an attenuation factor and
the power spectrum of f. The attenuation factor depends only on the kernels ki and the
shift s.
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Using Eq. (13) in Eq. (4a) with h =f and g = kj, taking the transform, and applying
Eq. (10) results in

F1 (v) = K1 (v) [COMB * F] (v), (28)

which is usually not bandlimited because neither factor is, as will be demonstrated.
Consequently, G in Eq. (27) is usually not bandlimited.

The frequency version of Eq. (14) allows us to rewrite Eq. (28) as

FI (v) = KI (v) F (v - m). (29)
m

By similar means, it can be shown that

Fs (v) = K1s) (v) I F (v - m) e-27ims. (30)
m

Even if F is bandlimited, the second factor in Eq. (29) or Eq. (30) is nonzero for arbitrarily

large v. So is the first whenever the kernel k0s) is of finite support, i.e., in all practical
cases. Consequently, g is not bandlimited, as claimed, because theft are not.

Nevertheless, using Eq. (26) along with Eqs. (19), (27), (29), and (30) results in

; dS~2 = Z v2,F( n - m) [Kj (v - n) - e-2nismK,(s) (v - n)]* x
ds- Jdv I F*x

e2 nisn I F (v -j) [K1 (v) - e-2tisjK(s) (v)] (31)

which we now show to be independent of grid placement wheneverf is oversampled.

Assuming then that

F(v)=0 for v> (32)2~~~~~~~(2
we examine a typical cross-term of Eq. (31):

- Xe 2nisn dv [Kj (v - n)]* X, F*(v - n - m) K(2S)(v) I F (v - j) e-27isj* (33)
n m

Because of Eq. (32), the integration in Eq. (33) kills all summand terms except when n + m
= j. Notice also that averaging over grid placement t, as described in Eqs. (21) and (22),
has the same effect. This means that the following results hold in the weak sense also, for
which Eq. (32) need not apply.

7
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Equation (33) thus reduces to

-a f dv [KI (v - n)]* E|F(v - n - m) F K2(s) (v) e- 2 7ciSm (34)
n m

Changing variables, v -* V + n + m in Eq. (34) produces

-|dv v) 1 2 (E e-27ism[K (v + m)]* K2Xs) (v + n + m) (35)
n,m

The other cross-terms of Eq. (31) produce results similar to expression (35), but with
different terms within the braces. The final result may be written as

ds2 =f IF(v)I12IEs(V) I2dv, (36)

which includes an attenuation factor that is the squared magnitude of a "complex error
factor" Es(v):

Es (v) _E[e2tins Ki (v + n) - K(s) (v + n)]. (37)
n

The quantity IF(v)12 IEs(v)12 will be called the error spectrum. The error factor Es(v)
depends only on the kernels, and not on the signals being processed. The independence of

2
Eq. (36) from the phase of F means that ds' does not depend on the placement of the
sampling grids when the signal is oversampled, even though the individual terms of Eq.
(25) do. Furthermore, as indicated earlier, Eq. (36) holds also for undersampled signals
when averaged over all such placements. Therefore, the result expressed by Eq. (36) has
strong and weak forms, just as the discrete Parseval's Theorem has (Eq. (20)).

The formula in Eq. (37) is most useful when the sum contains only a finite number of
terms, that is when the Fourier transforms of the kernels are of finite support. For example,
for perfect (inband) interpolation kl(x) = sinc(x), and Kl(v) has the value 1 inband (-1/2 <

v < 1/2), and is zero out of band. If the second signal is left unaltered, then /4s)(x) can be

chosen to be any function satisfying Eq. (5); a convenient choice is k(s)(x) = sinc(x). Then

K2(v) = Kl(v), and Eq. (37) can be used to show that for sinc interpolation the error factor
is given by

IEs (v) I = 2 sin (7 s int [v +) (38)

where "int" means "largest integer less than or equal to." (For example, int[-.5] = -1.)
Thus, the error factor is zero inband, but not out of band, where many other interpolators
are superior [12].

In many practical situations, it is the real-space form of a kernel that is of finite
support, and so the next goal is to express Eq. (37) in terms of ki instead of Ki.

8
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The first term of Eq. (37) is, by definition,

X e2 ins k, (x) e-2 nix(V+n)dx. (39)
n 

The real-space version of Eq. (12b) along with Eq. (11) then permits us to rewrite Eq. (39)
as

J ki (x) e 2 niXv comb (s - x) dx = 2 ei2 iv(S+n) k1 (s + n) (40)
n

A similar expression for the second term of Eq. (37) leads to

Es (v) = -iXcn [e-iOs k1 (s + n) - k(s) (n)] = e-ion [e-iOs k(4s) (n) - k(s) (n)], (41)
n n

where Eq. (3) has also been used. Equation (41) is an alternate form for Eq. (37); it
expresses the error factor directly in terms of the kernels instead of their Fourier
transforms.

According to expressions (1) and (2), the values k(s)(n) and k(s)(n) are tap weights of
digital filters operating on the pair of discrete signalsf(n) andf(n + s). Calling the transfer
functions of these filters H(s) and H(s) i.e.,

H(s) (V) -- z-icon k(S) (n) , (42a)

H (s)(v) _ e-in k(s) (n), (42b)

the complex error factor may be written compactly as

Es (v) = e 40)s H(ls) (V)- H(S) (v). (43)

Note that the sums in Eqs. (42a) and (42b) are finite in practical applications. In the
conventional method of change detection, in which the first signal is interpolated and the
second is unaltered, Eq. (5) applies, and the general error factor for
interpolation/subtraction reduces to

Es (v) = e-i(OS H(s) (v) - 1. (44)

The form for interpolation error that results from inserting Eq. (44) into Eq. (36) is
equivalent to one derived in Ref. 13 for the special case of a purely sinusoidal input signal
with a sub-Nyquist frequency.

9
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As an example, it can be shown that the perfect inband interpolator (Eq. (6)) has
transfer function

HMs) (v) -e e2 7ds (v- int [v+ .1]) (sinc interpolation). (45)

Equation (38), which was derived from the continuous-transform representation in Eq.
(37), can be recovered by substituting Eq. (45) into Eq. (44).

Equations (36), (37), and (41) or (43) express the resampling error at any fixed shift
s between a pair of sampling grids in terms of the spectrum of the underlying continuous
signal and an error factor that depends only on the method of filtering in expressions (1)
and (2). Furthermore, if f is not oversampled, then Eq. (36), which constitutes a
fundamental theorem of resampling error, still holds in the weak sense, i.e., averaged over
all possible placements of the two sampling grids relative to the signal. Finally, if the
functionf is regarded as one realization of a stationary stochastic process, then taking the
ensemble average of Eq. (36) yields a third form of the theorem, which relates the mean
squared error to IE12 and P(v) = <IF(v)12>ensemble' which is the power spectrum of the
stochastic process.

3. OPTIMAL DUAL DIFFERENCE FILTERS

The three forms of the fundamental theorem can be used to design DDFs satisfying a
variety of criteria, such as error minimization. For example, Eqs. (36) and (41) may be
combined to give

d,2 = R(n) [k, (n + m + s) kj (m + s) + k(S) (n + m) k(S) (m)]
mn

-2 7, R(n + s) ki (n + m + s) l45) (m) (46)
m,n

with

R(x)_ cos (xco) I F (v) dv. (47)

For the interpolation application (see Eq. (5)), this reduces to

d2= R(0)-2XR(n +s)kl(n+s)+ Y, R(n)kl(n+m+s)kl(m+s). (48)
n m,n

Minimization of d2 in Eq. (48) with respect to the variables kl(n + s) results in an
equation for the optimal N-point interpolation kernel

JR (m) ki (n -m + s) = R (n + s), (49)
m

valid for those n for which kl(n + s) in Eq. (48) is nonzero, i.e., for the N values of
n: int[-(N - 1)/2] ,..., int[(N - 1)/2]. Comparing Eq. (49) with Eq. (4a) shows that the
former is equivalent to the requirement that k, serve as a perfect interpolator for the
function R(x) for x e [-N/2, N/2], i.e., over the support defining the order of kj. Equation
(49) has appeared before [1], but only as the condition minimizing an ensemble

10
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mean-squared error for a stationary stochastic process, that is, in a more limited application
than shown here.

Because R(m) is symmetric, Eq. (49) is a Thplitz equation, for which general iterative
solution procedures have been developed [14,15]. Thus, in principle, kl(s + n) can always
be found as a function of 2N numbers, R(m) and R(n + s), with m = 0,..., N - 1 and
n = int[-(N - 1)/2] ,..., int[<(N - 1)/2]. Solutions to Eq. (49) were found in Ref. 12 for
various power spectral models: uniform, Gaussian, power law, and Lorentzian.

Error minimization equations can be derived for the more general case of DDFs in Eq.
(46), but now at least one extra constraint must be added, lest the trivial solution kl(n + s)

- k(s)(n) = 0 result. The nature of such constraints depends on that of the change that is to
be detected. It may be an extensive change, such as in a region of blood flow on an
angiogram, or large-scale agricultural evolution as seen from Earth orbit. It may be a local
change, such as the motion of a small object. The general goal is to combine the two
signals after filtering so that only such changes persist.

In dual difference filtering, at least one of the individual filters ki must be designed to
preserve the change that is to be detected. As an example, for extensive changes, an
appropriate choice of constraint is to require perfect dc response of each filter. This will
tend to preserve local averages. Similarly, for detection of small moving targets of known
shape, the filters may be constrained to conserve target energy or peak amplitude.

Generally, the inclusion of constraints in the DDF optimization problem can be
achieved by introducing Lagrangian multipliers Xi into Eq. (46):

d-2 - J R(n) [ki (n + m + s) kl (m + s) + s(n+ m) (m)]
m,n 

-2 , R(n + s) k1 (n + m + s) 4S) (m) - 2 Xi ci((ki(n + s), ks) (n)))* (50)
m,n j

The functions ci represent constraints on the digital filters. The error minimization
equations then result from differentiating Eq. (50) with respect to the tap weights kl(n + s)

and k2s)(n), and Xi:

XR(m)ki(n-m +s)-JR(m +s) S)(n-m)=PXhi aci (51a)
m m i akl(n+s)

JR (m) 1s)(n -m) -XR (m +s) kl(n +m +s) =5 Xi ( (S1b)
m m i Ak24 kn)

and

ci((ki(n +s), (s)(n))) = 0 . (Slc)

In many optimization problems, the solutions for k1, (s) show a symmetry reflecting
the fact that neither of the two original discrete signals is preferred. The symmetry is

ki(n + s) = k25 (-n) , (52a)

11



or, from Eq. (3),

k(s) (n) = k2 (- n),

which is illustrated in Fig. 2 for two- and three-point filters. In the remainder of this report,
the symmetry in Eq. (52) will be assumed for all DDFs, and the subscript on k, will be
omitted. Other symmetries are considered in Ref. 16.

f(n)

f(n- I +s)

I S

f(n+ I )

I*

Two-point DDF

t

k(s) k(s- I )

FRAME i

- - - - FRAME 2
f(n)

f(n- I )

S >

t

k(s)

f(n+ I )

Three-point DDF

It

k(s- I )

Fig. 2 - The usual symmetry in DDF filters. The
double-arrow lines connect those sample points in the
two digital signals that are multiplied by equal-value
tap weights from the corresponding kernels.
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For the symmetric case, the DDF error factor (Eq. (41)) reduces to

Es(v) -< 2 Xk(s + n)sin [c (n + S)] (53)

in which an irrelevant unimodular phase factor has been omitted. Also, the residual error
after subtraction (Eq. (46)) simplifies to

ds2=2 1 (R(n)k(n +m+s)k(m+s)-R(n +s)k(n+m+s)k(-m+s)) , (54)
m,n

and now there are fewer independent optimization equations:

XR(m)k(n-m+s)- ,R(m+s)k(m-n+s)= X ai i (55a)
m m i k(n+s)

Ci ((k (n + s))) = 0 (55b)

than in the general case (Eq. (51)).

The only type of constraint considered here in detail is that of a single linear one,
which can be written as

c((k(n +s))) Xk(n+s)t_- 1=0 . (56)
n

If tn = 1, Eq. (56) describes the "dc" constraint. Then the transfer functions in Eq. (42)
have unit response at v = 0. Alternatively, {tnJ may describe the amplitude of a target
image whose interframe motion is to be detected by use of a DDF. Gaussian targets will be
considered, with a standard deviation of a samples and unit peak value

tn = e-n2/2ay2 (7

In all cases considered, to has been normalized to unity. The values a = 1/2, 1 will be used
as examples. In imaging applications with matched optics design, these correspond
respectively to undersampled and nearly Nyquist-sampled images of point objects [12].

The constraint in Eq. (56) then means that the peak signal value is reproduced by the
filter (if the peak target value lies on the first sampling grid). It often happens that an
asymmetrical form of the tap weights (ks(n)} transforms a symmetrical target into an
asymmetrical one, with a consequent shift in the peak location. The filtered peak can then
be larger than the unfiltered one. In any case, Eq. (56) requires that the peak value in the
filtered signal be no less than in the unfiltered.

In all DDF examples studied here, error minimization requirements are satisfied
simultaneously with a constraint that peak signal be conserved. These are always equivalent
to a signal-to-clutter criterion. For example, requiring that the peak signal be doubled
instead of conserved generally also doubles the filter tap weights and, from Eq. (46) or

(54), the rms clutter 42 as well.
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With the constraint in Eq. (56), Eq. (55a) becomes

JR(m)k(n -m+s)-XR(m+s)k(m-n +S)=Xt.n' (58)
m m

valid for n = int[-(N - 1)/2] ,..., int[(N - 1)/2]. These linear equations in N variables
k(n + s) should be compared to Eq. (49), the corresponding optimization equations for the
interpolation problem. The explicit constraints in Eq. (56) are replaced there by a more
severe one-the second signal is left unfiltered.

Before applying these results to specific problems, we note that as long as the
quantities R(m) and R(m + s) are known, Eq. (58) can be used to find the optimal k(n + s)
even if the value of s is unknown, because all the s-dependence in Eq. (58) is implicit,
appearing in the arguments of functions. This means that change detection might be
possible without knowledge of the shift s between sampling grids, if estimates of R(m) and
R(m + s) are available. And these may be provided by interpreting R as an autocorrelation
function and then constructing periodograms [17]: (a) from either signal, to estimate R(m),
and (b) from both to estimate R(m + s). This technique introduces errors by using
estimates of R, but it completely eliminates errors from a prior step that we have ignored:
estimation of the shift s. The competition between these errors depends on the performance
of registration methods and is not studied here.

3.1 Power-Law Spectrum

A common analytic model for image power spectra is a low inverse power p of
frequency, typically with p = 2. We will examine optimal DDFs for the spectrum

IF(V)1 2 _ i/v 2 . (59)

Besides its relevance to imagery, this choice is motivated by the simplicity of the optimal
interpolator solution, which is known to all orders and can therefore be compared easily
with the DDF solutions. Also, the method used here to handle the dc singularity is
generalizable to other singular spectra. In practice, at some cutoff the low-frequency form
of Eq. (59) becomes bounded, keeping the real-space image variance finite. The following
analysis shows that the relative performance of most resamplers is insensitive to the cutoff.

We will treat Eq. (59) as the limiting case of the spectrum

F (v) 12__ 1 (60)

as £ -< 0. The function R in Eq. (47) is then easily evaluated:

R (x) - 7£ pWl

where
p e-2i2 (£ 0). (61)

14
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For two-point filtering, Eq. (58) reduces to

R (0) -R (s) R (1) -R (1 - s) -1 k (s) 0

R(1)-R(1-s) R(0)-R(2-s) -tj k (s -1) = (62)

whose solution is

k(s) = M31/ det
(63)

k(s -1) = -m 32 I det

with mij the cofactors of the matrix in Eq. (62) and det the determinant. In particular,

m3l =R(O)-R(2-s)-tj[R(l)-R(1 -s)]

m32 =R(l)-R(1-s)-tj[R(O)-R(s)]

det = m31 - t m32 * (64)

The limit e -* 0 corresponds to p -e 1, in which case (cIIC)R(x) -* 1 V x; Eq. (64)
then shows that Eq. (63) is indeterminate. Application of l'HMpital's Rule yields

k(s) = [s(I-ti) -2] det

k(s -1) = -s(1 + tl) / det

det=2(s- 1) - s(l + tj), (65)

which describes the optimal two-point DDF for ap = 2 power-law spectrum. Except when
t1 assumes one of the two values -1 ± 42, this kernel is a rational function of s, rather than
a polynomial. Note that the optimal interpolation kernels for power-law spectra are
polynomials [12], as are most interpolators in popular use. Thus, the DDF approach
introduces a new class of kernels as a tool for change detection.

For the power spectrum of Eq. (59), the minimum-error interpolator, i.e., the
solution to Eq. (49), is LIN for all N 2 2 [1]. This is a peculiarity of the p = 2 spectrum,
that the optimal interpolator has support 2 instead of N. Figure 3 plots the error factors
IEs(v) I for each of three interpolators: the optimal (LIN), Cubic Convolution [18], which is
a popular four-point interpolator, and the Low-Frequency optimal four-point interpolator
(LF-4), which is designed to have the smallest possible error factor in the vicinity of v = 0
[12] and is, therefore, appropriate for the singular spectrum in Eq. (59). At s = 0, the
errors are zero; at s = 1/2, they are usually the worst. Our examples are always at the
intermediate shift s = 1/4, which choice explains (see Eq. (41)) the Av = 4 periodicities in
the error factors.
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Fig. 3- Error factors IEs(v)l at the shift s = 0.25 for three
interpolators: Linear, Cubic Convolution, and LF-4; and one
two-point DDF: the optimal for a p = 2 power law with the
dc constraint. The Nyquist frequency is 0.5 cycles/sample

Figure 3 also shows the error factor for the optimal two-point DDFs in Eq. (65),
using the dc constraint (tn = 1 in Eq. (56)). Figure 4 shows the corresponding error spectra
(the integrand of Eq. (36)) for the case of a p = 2 signal spectrum, and it lists the relative
areas under these curves. By Eq. (36), these are also the relative mean squared errors in the
filtered difference signals. Note that the optimal DDF, even for N = 2, outperforms all
interpolators regardless of their order, because it outperforms the optimal, LIN. The
polynomial interpolators (Cubic Convolution and LF-4) are included to illustrate their
superior performance below the Nyquist frequency (v = 1/2), an important point in our
later discussions.

4 .. . . . . . . . . . . . .

AREA

m 3 LINEAR 3.34

D..........CUBIC CONVOLUTION 3.45

< 2 \ -LF-4 3.41

ELi P'=2 OPTIMAL DDOF 2.66

0

0~
0 /D j -t 

0 1 2 3 4 5

FREQUENCY (CYCLES/SAMPLE)

Fig. 4- Error spectra IEs(v) F(v)12 when the image spectrum
is a p = 2 power law, for three interpolators and one DDF at
the shift s = 0.25
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Figures 5 and 6 show the effects of imposing on individual DDF filter performance
the three types of constraint discussed earlier. Figures 7 and 8 show the corresponding
results for the p = 2 optimal kernels when N = 4. As always, a shift s = 1/4 is assumed.
The increasing errors with decreasing a occur because smaller values of the standard
deviation correspond to targets with a larger high-frequency content. Therefore, conserving
the peak signal value competes increasingly with minimizing difference clutter, for which
low frequencies are important for power-law spectra. The dc constraint may be considered
a limiting version of the Gaussians as a -o o-.
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1 2 3 4 5

FREQUENCY (CYCLES/SAMPLE)

Fig. 5 - Error factors of the optimal two-point DDFs for
a p = 2 power law, for three different filter constraints
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Fig. 6 - Error spectra after use of the optimal two-point
DDFs, for three different filter constraints. The input signal
spectrum is a p = 2 power law.
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Fig. 7- Error factors of the optimal four-point DDFs for
a p = 2 power law, for three different filter constraints
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Fig. 8 - Error spectra after use of the optimal four-point
DDFs, for three different filter constraints. The input signal
spectrum is a p = 2 power law.

Notice that the frequency range plotted in these figures extends to 10 times the
Nyquist frequency. If the power spectrum model of Eq. (59) is truncated to zero above the
Nyquist frequency, then, as Figs. 3 and 4 show, the polynomial solutions are superior to
the "optimal." Of course, the truncation produces a new R(x), and a corresponding new
optimal filter is described by Eq. (58). It can be found by a straightforward numerical
procedure [16], which will not be pursued here. Instead, another, more robust approach
that achieves near-optimal performance is described.
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4. SUB OPTIMAL KERNEL DESIGN

Seldom does a simple analytic form like Eq. (59) or (60) describe all power spectra of
interest. For imagery, for example, different power laws are often fit to the same spectrum
in different frequency ranges. Also, a hard cutoff at some high frequency is generally
imposed by the optical system collecting the data. A further complication is that a spectrum
may differ significantly in different subregions of a single image. We now discuss methods
for designing kernels that rely on more general properties of power spectra than a precise
and simple analytic form.

4.1 Low-Frequency Optimal

The first example is Symmetric Low-Frequency optimal kernels of order N, called
SLF-N. The performance of these DDFs will be compared to similar kernels, LF-N, found
for the interpolation approach. Both types of kernel are defined by the requirement that the

corresponding error factor Es(v) and the maximum possible number of its derivatives

E(m)(v) be zero at v = 0. This criterion ensures a reasonably good performance for power

spectra with nearly singular low-frequency behavior, which is common for imagery. The
LF-N were studied in Ref. 12; their use is essentially a local version of the Lagrange
interpolation procedure, which finds the unique (N - 1)-order polynomial connecting N
sample points.

For symmetric DDFs, Eq. (53) implies that

Etno (0) = 0 (66)

for all even values of m. Therefore, if N, is the number of constraints used to preserve the
changes to be detected, then an N-point kernel has (N - N,) degrees of freedom, which can
be used to satisfy Eq. (66) for several low odd values of m. Then Eq. (66) holds for
m = 0, ..., 2(N - N,). (In our examples, Nc always has the value 1.)

By contrast, for interpolation, the N degrees of freedom can be used to make the error
in Eq. (44) satisfy Eq. (66) for all s only for m = 0, ..., N - 1. Therefore, at low
frequencies, the error factor (Eq. (44)) associated with LF-N varies as vN, while for SLF-
N with one constraint, it (Eq. (43)) varies as v2N-1. For example, for N = 2, the LF
solution is just LIN, for which the error factor varies as v2 ; for SLF-2, derived below, it
varies as v3. Thus, SLF-N produces less error at low frequencies than LF-N. This
superior performance is analogous to the situation found above for the p = 2 optimal DDF,
although there the DDF solution was even more preferred, in that even the N = 2 DDF
kernel outperformed the optimal interpolator for any N.

To find the kernel for SLF-N with one constraint of the form in Eq. (56), we solve
Eq. (66) which, from Eq. (53), becomes

J(n+s) m k(n+s)=0 (67)

for m = 1, 3, ... , 2N - 3. For example, for N = 2, the homogeneous Eq. (67) becomes

(-1 + S)k(-1 +s)+ 2k(s)=0. (68)2 ~~2
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The inhomogeneous equation of constraint can be taken to be the dc condition

E k(n + s)= 1, (69)
n

because the solutions k(n + s) for the more general case of Eq. (56) are simply proportional
to these. The same is true of the corresponding error factors Es(v), which are linear in
k(n + s). The dc solution can thus be used to express the general form of the peak-signal to
rms clutter

SIC =k(n + S)t nl ds. (70)
n

That is, if k(n + s) is the SLF solution with the dc constraint (Eq. (69)), then Eq. (70)
gives the SIC ratio for the more general problem defined by Eq. (56). The denominator is
computed using Eqs. (36) and (41). Note that the analogous property does not generally
hold for the optimal kernels for a given power spectrum. Figures 5 and 7 illustrate this, in
that the ratio of the error factors corresponding to different constraints clearly depends on
frequency, whereas Eq. (53) predicts the opposite for proportional kernels.

The solution to Eqs. (68) and (69) is

k(s) = - 2(s - 2)
2

k(-l +s)- 1 (s). (71)
2

This has a simple interpretation in terms of conventional interpolation. Equation (71)
represents the kernel for linear interpolation at a shift of s12. From Eq. (52) then, the
filtering of signal 2 consists of linear interpolation at a shift of -s/2. In other words, the
SLF-2 solution amounts to shifting the two discrete signals toward each other, using linear
interpolation, by half their separation. Such a simple relation does not, however, persist at
higher orders for SLF-N.

The low-frequency optimal dc kernel solutions for SLF-3 are straightforward but
tedious to derive. They satisfy two homogeneous equations, Eq. (67) with m = 1, 3,
along with Eq. (69). The dc solution is

k(s - 1) = 1 (s + 1) (s + 2)
12

k(s) =-I (s-2)(s+2)
6

k(s+ 1) 1 j§(s-l)(s-2). (72)
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For N = 4, the dc solution is

k (s -2)= 1(s) (s +1)(s +2)
120

k (s -1) - 3-(s -4) (s+ 1) (s +2)
120

k(s) = 3(s -4) (s -3) (s +2)

k(s+ l)=- 1 (s-2)(s-3)(s-4). (73)
120

The pattern of the monomial factors appearing in Eqs. (71) through (73) makes the
use of an ansatz a feasible approach for higher N. For example, when N = 5, we expect
fourth-order polynomial kernels k(s - n) with monomial factors of the form (s - m) with
integer Iml < 4 m • n. The coefficients multiplying the various polynomials can be
determined from the condition in Eq. (69).

Figure 9 includes the error factors for the above kernels along with those for the
interpolators LF-2 (LIN) and LF-4. Note that the three-point DDF is better than the four-
point interpolator at all inband frequencies.

I101

I0

I0
....... SLF-2

10 LF-4

SLF-3

10- SLF-4

106

0.00 0.10 00 0.30 0.40 0.50
FREQUENCY (CYCLES/SAMPLE)

Fig. 9 -Error factors for two interpolators: Linear and LF-4;

and three DDFs: SLF-2, 3, and 4

Figures 10 and 1 1 show the SLF-2, 3, and 4 error spectra for p = 2, 4 power laws,
respectively. Note that no meaningful comparison can be made between. Figs. 10 and 1 1
because no low-frequency cutoffs have been defined that could make the input spectra have
equal areas and, hence, equal (and finite) unfiltered variances. For p = 2, the rmns difference
d, is approximately 3.3 times smaller for SLF-3 than for SLF-2; and 7.1 times smaller for
SLF-4 than for SLF-2. For p = 4, they are 3.8 and 8.7. (For p = 3, the corresponding
ratios are 3.5 and 7.7, respectively.) The more singular spectra benefit relatively more as N
increases for the SLF filters, which are designed to work well at low frequencies.
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Fig. 10- Error spectra for SLF-2, 3, and 4,
and ap = 2 power law
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Fig. 11 - Error spectra for SLF-2, 3, and 4,
and ap = 4 power law

Notice that the residual error spectrum plotted in Fig. 10 varies as v4N-4 near dc, and

as V4N-6 in Fig. 11. Even for N = 2, this may be considered low-frequency overkill. The
bulk of the error energy even for the p = 4 spectrum resides at high frequencies, which
have been neglected in the SLF definition. The next subsection expands the filter design
procedures to remedy this defect.
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4.2 Hybrid Designs

The error factor in Eq. (53) and derivatives of it may be constrained to the value zero
at other frequencies besides dc. For many of the DDFs and interpolators already discussed,
the peak values of the error spectra occur at a high frequency, in particular, above the
Nyquist. We now restrict the remaining discussion to oversampled systems, such as are
assumed in Figs. 9 through 11. For them, the maximum error occurs at the Nyquist
frequency, and a natural next step in filter design would be to sacrifice some low-frequency
performance to reduce the residual error at higher frequencies.

The elimination of errors at nonzero frequencies is possible with interpolation as well
as with DDFs and has been studied [12]. Notice, however, that Es(v) for interpolation (Eq.
(44)) is complex at most frequencies, and requiring it to be zero usually expends two
degrees of design freedom. An exception occurs at dc, at which frequency requiring Eq.
(44) to be zero at all shifts s constitutes but one real constraint. On the other hand, because

at v = 1/2 the transfer function H(s) of Eq. (42a) is real, Es(v) in Eq. (44) (i.e., for
interpolation) can never be zero at all shifts. This limitation occurs because a sine wave at
the Nyquist frequency is zero at all integer sample values, and is, therefore, invisible to the
sampling process. Such a sinusoid cannot, therefore, be reproduced by any interpolator.

On the other hand, for symmetric DDFs, Es(v) may be taken as real (see Eq. (53)).
Therefore, each frequency null requires the expenditure of only one degree of freedom.
Furthermore, because of Eq. (52), the transfer functions in Eq. (42) for the two filters are
complex conjugates, and the complex error factor in Eq. (43) may be written as

Es (v) -4 21 Ms) (v) l sin ((s) (v) - cmS), (74)

in which ¢(s) is the phase of H(4s). A unimodular factor has again been omitted.

Now note from Eq. (45) that if H(s) in Eq. (74) is derived from the sinc kernel at the
shift sf2, then 0 has the value cos/2 inband, making Es(v) zero inband for all shifts. This
simply confirms that shifting a pair of discrete oversampled signals toward each other by
half their separation gives the ideal result if the ideal interpolator can be used. However,
Eq. (74) shows that zero inband error for DDFs does not require use of the ideal
interpolator, but only one with the ideal phase. By contrast, for the interpolation problem,
zero inband error in Eq. (44) requires specific use of the sinc interpolator.

According to Eq. (74), Es(v) can be made zero either by making the magnitude of the
transfer function zero, or by adjusting its phase appropriately. Furthermore, this can be
accomplished with DDFs even at the Nyquist frequency, an impossibility for interpolators.

As an example, we consider three-point DDFs for which the error is zero at angular
frequencies col and co2. The form in Eqs. (53) and (56) can be written as

Xll X01 X1 k (-I+ s)- 00 

X21 x x k (s) = 0, (75)

tI 1 t-I JLk(l+s)j 1
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where

Xn' = sin [wo (n + 2) ( = 1, 2; n = -1, 0, 1 )(76)

According to Cramer's Rule, the solution k(n + s) can be derived by substituting the right-
hand vector in Eq. (75) for the nth column of the left-hand matrix, finding the determinant
of this modified matrix, and dividing by the determinant of the original matrix. However,
the zeroes in the vector make each such modified matrix independent of all tn. Therefore,
any solutions fk(n + s)) for one set (tn) are proportional to those for any other, for
example for { tn = 1 }. We may, therefore, solve Eq. (75) for tn = 1 and rely on Eq. (70) for
the physically important quantity, peak-signal/clutter. Note that because the SLF-3 filter
may be viewed as the limiting solution to Eq. (75) as the frequencies v1, v2 -÷ 0, the
prescription of Eq. (70) also applies to it and, more generally, to SLF-N.

The solution to Eq. (75) with tn = 1 is

k(s-l)=m 3 Idet

k (s) = -m32 / det

k (s + 1) = m33 / det (77)

with mij the cofactors of the matrix in Eq. (75) and det its determinant.

Figure 12 plots the error factor for the above kernel with v1 = 1/4, V2 = 1/2. We will
generally use the notation SN(v1, v2, ...) to mean a symmetric N-point DDF with zeroes in
its error factor at frequencies V1, V2, -... If the number of arguments of SN is less than
N - 1 - the single dc constraint of Eq. (69) is always assumed - then the remaining
degrees of freedom are understood to have been used to set odd low-order derivatives of
Es(v) equal to zero at v = 0. (Even ones are automatically zero.) Thus, S3(1/4), whose
performance is also depicted in Fig. 12, satisfies E,(l/4) = 0 as well as Es(0) = 0. Such
hybrid filters generally have low-frequency properties similar to SLFs, along with null
errors at selected higher frequencies. As with SLFs, for hybrid filters the dc constraint may
be assumed and Eq. (70) used to find SIC ratios.

Figure 12 also shows the performance of an N = 4 hybrid interpolator studied in Ref.
12. In this case, two of the interpolator's four degrees of freedom are used to create the null
at v = 1/4; the other two make Es(O) = Es(0) = 0. Therefore, at low v, IEI varies as v2 for
the interpolator. For S3(1/4, 1/2), 1E51 varies as v, performing worse than the interpolator at
low frequencies, but better at all frequencies beyond v = 0.13. The error factor for S3(1/4)
begins with a V3 dependence and remains superior to the interpolator at all frequencies, but
becomes worse than the other DDF above v = 0.39.

Figure 13 plots the corresponding error spectra for the p = 2 power spectrum. Both
DDFs give smaller residual rms differences than the interpolator (S3(1/4, 1/2) by the factor
3.4 and S3(1/4) by the factor 4.5).
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Fig. 12 - Errors factors for three hybrid methods. Besides at the
frequency v = 0, other nulls occur at 1/4 for the interpolator and for
both DDFs, S3(114, 1/2) and S2(1/4); also at v = 1/2 for S3(1/4, 1/2).
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Fig. 13 - Error spectra for three hybrid methods and a p = 2 spectrum.
The interpolator is of order 4; both DDFs are of order 3.

The relative gain in performance is even more impressive if the order of the DDF is as
high as that of the interpolator. Figure 14 compares the error factors for S4(1/4, 1/2) with
the two DDFs of Fig. 12. The extra degree of freedom in the four-point method allows it
to combine the low-frequency behavior of S3(1/4) with the high-frequency behavior of
S3(1/4, 1/2). The corresponding error spectra are shown in Fig. 15. Figure 16 summarizes
thep = 2 results and includes results for S3(0.15, 0.4) and S4(0.1, 0.3, 0.45), which have
been found to be good general purpose DDFs for imaging applications. Similar gains are
found for p = 3 and p = 4 power-law spectra.
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Fig. 16 -Performance of interpolators and DDFs relative to Linear,
for a p = 2 input spectrum truncated at the Nyquist frequency. Numbers
in parentheses indicate locations of null frequencies.

4.3 Effects on Gaussian Targets

Figures 17 through 20 illustrate the effects of two four-point DDFs on Gaussian
targets. Figures 17 and 18 use the p = 2 optimal DDF, with Gaussian target constraints in
Eqs. (56) and (57) for a = 0.5 and 1.0, respectively. Figures 19 and 20 show similar
results for the DDF S4(1/4,1/2). The targets are assumed to have moved a distance of at
least a few samples between the collection times of the discrete frames of data, so that they
are not destroyed by the frame subtraction operation. The solid lines represent the
Gaussians, which are sampled at points on the abscissa separated by a distance of one. If,
for example, a Gaussian is sampled at its peak, located at position 5 in the plots, then the
filtered target has a peak value identical to the unfiltered, because the two curves intersect
there, a consequence of imposing the condition of Eq. (56) on the filters. If, on the other
hand, a Gaussian signal happens to be sampled off its peak, then the corresponding value
produced by the filter is usually higher than the input. That is, the filtered curves are
usually above the unfiltered at any given sampling position.
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Fig. 17 - Effect on a a = 0.5 Gaussian target of the optimal
four-point DDF, designed with a ar = 0.5 Gaussian constraint,
for a p = 2 power-law input spectrum and the shift s = 0.25
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Fig. 18 - Effect on a a = 1.0 Gaussian target of the optimal
four-point DDF, designed with a a = 1.0 Gaussian constraint,
for a p = 2 power-law input spectrum and the shift s = 0.25
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Fig. 19 -Effect of S4(1/4, 1/2) DDF with c = 0.5 Gaussian
constraint on a a = 0.5 Gaussian target
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Fig. 20- Effect of S4(1/4, 1/2) DDF with a = 1.0 Gaussian
constraint on a a = 1.0 Gaussian target

Thus, the signal-to-clutter formula (Eq. (70)) is usually a slight underestimate of the
true gain. For example, if in Fig. 17 the sampling points are at the half integers, then the
peak input signal is exp(-(l/2) 2 /(2cy2 )) = 0.607, whereas the peak filtered value
is = 0.75. Therefore, Eq. (70) actually underestimates the peak-signal/clutter by the factor
1.23. Note also that a second, filtered version of a moving Gaussian target appears in the
difference frame; for symmetric DDFs, it corresponds to the negative mirror image of the
appropriate dotted curve in Figs. 17 through 20.
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More generally, the performance of the single-frame filters can be characterized by the
usual frequency descriptor of digital signal processing, the magnitude of the transfer
function H(s). Figure 21 plots these for three three-point DDFs with the dc constraint.
These show the typical low-pass characteristic of all the filters discussed here.

1.0

0.8
0

0.4 SLF-30

C-)

: 0.6 ------- DDF: NULL AT .25

ry ----- DDF: NULLS AT .25, .50 '.
0.2

0 04. . .. . . .
0.00 0.10 0.20 0.30 0.40 0.50

FREQUENCY (CYCLES/SAMPLE)

Fig. 21 -Transfer functions of three three-point
DDFs with dc constraint

Figure 22 shows, for each of the three constraints, the transfer functions for an
effective inband DDF, the hybrid S4(1/4,1/2). Note that four of the six filters described in
Figs. 21 and 22 have difference-error nulls at v = 1/2, five have them at v = 1/4, and all
have them at v = 0. However, these nulls are achieved differently, according to Eq. (74).
The null error factors at v = 1/2 are always zero because WW~sI = 0. By contrast, the plots
show that H(s) is never zero at the two lower frequencies, and so these nulls are achieved
by having ¢(S)= cos/2.

Note also that the three transfer functions in Fig. 22 are proportional, a reflection of
the previously described proportionality of the corresponding kernels fk(n + s)) for hybrid
DDFs. This should be contrasted with the optimal four-point filter for the p = 2 spectrum in
Fig. 23, where the dependence on the inhomogeneous target constraint of Eq. (56) is more
complicated. Finally, in each of these two figures, the two dc amplifications occur because
of the combination of the low-pass filter characteristics of H(s) and the constraint preserving
peak value of a Gaussian target. These require the filter to broaden the target without
depressing its central value. The dotted curves in Figs. 17 through 20 all have larger
means than the Gaussians that generated them.

5. RELATED ISSUES

Reference 16 discusses several corollaries of the mean squared-error formulation
developed here. These include generalizations to higher dimensions, in which the variables
x, n, and the shift s become vectors. Also, an extension of the analysis to include more
than two signals is achieved which, for image processing applications, transforms the
problem into one of multiframe tracking. Generalizations in Ref. 16 are also developed that
allow the evaluation and optimization of methods of prediction, restoration, and finite-
length matched filtering.
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Fig. 22- Transfer functions of S4(1/4, 1/2) for
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Here we include a discussion of additive temporal noise. This report is concerned
mostly with the error d5, defined in Eq. (25). In image processing applications, d, is called
residual clutter. Initial clutter is just the variance of the unprocessed image. According to

Eqs. (41) and (36), if the second filter k2 vanishes and K(s)(n) is 8n, i.e., if nothing is

done to the first image, then lEsl= 1 and d 2 is the variance of the image (by Plancherel's
formula [19]). Therefore, according to Eq. (36), the squared modulus of the error factor is
the ratio of the power in the filtered difference spectrum to that in the original image.

In images for which stochastic (temporal) noise appearing in both images is
comparable to the spatial clutter, or for processed difference images in which the residual
clutter has been reduced to the noise level, Eq. (36) is inaccurate. Stochastic noise

contributions N must be added to the digital signals, so that the replacements

f(n) -f(n) + N1 (n)

f(n + s)4f(n + s)+N2(n) (78)

are required.

Note that if the second image is unaltered, in which case d, is a measure of
interpolation accuracy, then the methodology of Sections 2 and 3 applies to the restoration

of a digital image with additive noise N. In this case, the problem becomes one of finite
Wiener filtering, and the optimization equation describes the minimum mean-squared error
finite digital filter. Note that this is usually not simply a truncated version of the standard
Wiener solution, which involves an infinite-order filter k(n + s).

Here we assume that the noise terms in Eq. (78) are independent both of each other
and of the imagef, and that they are zero-mean stationary ergodic random processes with

the following common autocorrelation function A:

.4 (n) = E; (i (m) Ni (n - m)) , (79)

where E, denotes an ensemble average for i = 1 and 2. Then Eq. (54) generalizes to

d2-2 = ([R(n)+ A (n)] k(n +m+s)k(m+s)-R(n +s)k(n +m+s)k(-m+s)), (80)
m, n

which includes both clutter and noise. The optimization (Eq. (55a)) is replaced by

E[R (m) + A (m)] k (n - m + s) - R (m + s) k (m - n + s) (81)
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As an example of differences between optimal solutions with and without noise, we
consider N = 2 solutions for the Lorentzian clutter spectrum, with the general target
constraint of Eq. (56) (with to = 1). The temporal noise is assumed to be white, i.e., A&(m)

cc tn, and r is the noise to clutter ratio r = A(0)/R(0). The optimal DDF is given by
0'

k (-1) = pa -pl-s + ti (psl- r)
p2-s. -1- r - 2t, (p - pled - t2(1- ps + r)

k (0) = 1 - tik(-1), (82)

with p given by Eq. (61).

If the noise were absent, then r = 0 and the solution as s - 0 becomes

k(-1) =0

k(O) = 1 . (83)

This corresponds to complete removal of clutter by the DDF by reproducing the sample
values of both digital signals. If the solution in Eq. (82) with r = 0 is used to reduce a
severe clutter problem that might exist at large shifts - that is, if noise is ignored - then at
small shifts it can be noticeably suboptimal, as measured by the ratio of signal to clutter-
plus-noise. In particular, if the noise term is kept in Eq. (82), the solution at s = 0 is

k (-I) rt1
1- p2 + r(1+ t)

(84)
k (0) =1 - t k (-1) .

Noise cannot be totally removed at any shift, and this solu ion represents a balance in
which the filter keeps some clutter and some noise. If noise happens to dominate clutter,
i.e., r is large, then Eq. (84) approaches

a(-1)= tl
1 +t

k(O) 12 (85)+t

which is the two-point matched filter in white noise. This DDF produces a smaller (mean
squared) signal-to-noise ratio than does the DDF of Eq. (83) by the factor (1 + t2). Such is
the extent to which the DDF designed purely for clutter suppression is suboptimal, when it
is applied in a noise-dominant environment.

6. SUMMARY AND CONCLUSIONS

This report generalizes the notion of interpolation and digital subtraction as a means of
detecting changes in a pair of discrete signals. By acting on both signals, Dual Difference
Filters afford more flexibility and power than do interpolators of the same order. This is
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proven by a fundamental theorem (Eq. (36)) of mean squared error for the general
resampling problem, which includes interpolation as a special case.

For any fixed shift between sampling grids, the strong form of the theorem associates
an error spectrum with any DDF that is applied to an oversampled signal. The error
spectrum is the product of the power spectrum of the continuous underlying signal that
generates the discrete samples, and an attenuation factor. The weak form of the theorem
says the same thing for undersampled signals, but in an average sense. Formulae are
derived for the attenuation factors that can be used for filters that are of finite extent in either
frequency-space (Eq. (37)) or real-space (Eq. (41)). A corollary of the weak theorem
allows application of the error formulae to stochastic problems.

A fundamental optimization equation (Eq. (58)) is derived. If the precise form of the
signal spectrum is known, then the solution of the equation produces the maximum
possible peak-signal to rms clutter for any DDF of given order. As an example, the case of
a power-law spectrum and a single linear constraint on the filters is solved.

Flexible design methods for DDFs are developed that produce superior performance
for a wide range of signal spectra. For example, for three bandlimited power-law spectra
(p = 2, 3, and 4), a single four-point DDF is found that enhances residual signal/clutter by
approximately 30 dB, compared to the best popular interpolators of the same order.
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